Platelet-rich plasma was obtained by centrifugation, and diluted to 5 × 10^9 platelets per μl with plasma. Platelet aggregation was assayed as described. An aortic ring 4 mm long was prepared from thoracic aorta and mounted on a pair of wires in an organ bath filled with Krebs–Henseleit buffer gassed with 95% O₂–5% CO₂ at 37 °C. Preload was 0.5 g. The ring was contracted with 0.1 μM noradrenaline and its relaxation response to various concentrations of cica-
 prostanoids was studied.

Blood pressure, heart rate and bleeding time. Basal blood pressure and heart rate were measured in conscious animals by using the tail-cuff method. In the analysis of cica-
 prostanoids or PGE₂-induced hypotension, animals were anaesthetized with pentobarbital sodium (60 mg kg⁻¹, i.p.), and arterial blood pressure was monitored through a cannula into the carotid artery. Bleeding time was measured as described.

Prostanoid production. Isolated aorta was preincubated in oxygenated Krebs–Henseleit buffer at 37 °C for 1 h and then incubated in fresh buffer for 20 min; the supernatant was assayed. Prostanoids in peritoneal lavage were extracted with Sep-Pak C18 columns and then assayed for 6-keto-PGF₁α and PGE₂ (ref. 25).

Analysis of thrombus formation. Mice (24–30 g) were anaesthetized with halothane and the carotid arteries exposed by a cervical incision. A piece of Parafilm 1 mm wide was inserted under the artery and 5 μl of a 7.5% FeCl₃ solution was dropped on the artery. After 1 min the solution was wiped off, and the mice were allowed to recover from the anaesthetic. After 4 h, the arteries and blood flow were examined microscopically by cutting the distal end of the artery. A 5-mm long segment containing the affected region was excised and fixed with 10% formaldehyde. Thrombosis-induced death of animals treated with 5% FeCl₃ solution was recorded after 24 h.

Inflammation. Vascular permeability was tested using Pontamine skyblue as described. PGs alone, bradykinin alone, or both were intradermally injected. After 40 min, mice were killed. The exuded dye in the skin was extracted and the amounts determined. Permeability was expressed as a percentage of that induced by 10 nmol bradykinin alone in the same animals. Carrageenin-induced pleurisy was evoked by injecting 40 μl of 2% carrageenin into the right pleural cavity of mice. After 40 min, mice were killed and the exuded dye in the pleural cavity was extracted and the amounts determined. Permeability was expressed as a percentage of that induced by 10 nmol bradykinin alone in the same animals.

Nociceptive tests. The tail-flick response was evoked either by heat or by applying pressure. Latencies were determined by using a tail-flick apparatus (Ugo Basile) and with an analgesy meter (Ugo Basile), respectively. In the hot-
 plate test, mice were placed on a plate (55 ± 0.1 °C) and the latency for jumping determined as described. In the writhing test, mice were intraperitoneally injected with either 0.9% acetic acid (5 ml kg⁻¹) or PGs (2 μg). The frequency of stretch responses was counted for 30 min for acetic acid or for 15 min for PGs. Indomethacin (10 mg kg⁻¹) was administered intraperitoneally 30 min before acetic acid injection.

Data analysis. Data are expressed as means ± s.e.m. The significance of difference between groups was evaluated using ANOVA with a subsequent Dunnett’s test, except for thrombus formation (Fig 2 legend).

Crustacean appendage evolution associated with changes in Hox gene expression

Michalis Averof & **Nipam H. Patel**

Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK

† HHMI, University of Chicago, MC1028, N-101, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA

* Present address: EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany

Homeotic (Hox) genes specify the differential identity of segments along the body axis of insects. Changes in the segmental organization of arthropod bodies may therefore be driven by changes in the function of Hox genes, but so far this has been difficult to demonstrate. We show here that changes in the expression pattern of the Hox genes Ubx and AbdA in different crustaceans correlate well with the modification of their anterior thoracic limbs into feeding appendages (maxillipeds). Our observations provide direct evidence that major morphological changes in arthropod body plans are associated with changes in Hox gene regulation. They suggest that homeotic changes may play a role in the normal process of adaptive evolutionary change.

Genetic manipulation of model organisms like Drosophila can reveal the potential of developmental systems to undergo particular types of morphological change: for example, patterns of segmental specialization may be altered by changing the function of Hox genes. This approach alone, however, cannot identify the actual genetic changes that take place over macro-evolutionary timescales. Comparative studies are required but these so far indicate that crustaceans and insects share almost identical complements of Hox genes and that the domains of Hox gene expression have been broadly conserved during insect evolution (reviewed in ref. 6). Initial comparisons of Hox gene expression between crustaceans and insects documented changes associated with the independent specialization of trunk regions (thorax and abdomen) in these
animals. Studies on such divergent animals are constrained by the lack of a common framework for morphological comparison. We focus here on comparisons between different subgroups of crustaceans, where we can identify changes in Hox gene expression that relate to well characterized variations in patterns of segmental specialization.

In most arthropods, thoracic appendages are specialized primarily for locomotor functions. But in some crustaceans, limbs from the anterior thorax have been recruited and specialized for the manipulation of food. These modified thoracic appendages, termed maxillipeds, are morphologically and functionally more similar to the feeding appendages (maxillae) of the more anterior gnathal segments than to the remaining thoracic limbs. Maxillipeds are generally reduced in size, show modification, fusion, or loss of particular limb elements, and are primarily associated with feeding, not locomotion. These morphological specializations are reminiscent of partial homeotic transformations (thoracic to gnathal) and represent the evolution of new and distinct segmental identities in the anterior region of the trunk. We investigated whether any of these changes could be associated with differences in Hox gene regulation by studying the combined expression of the Hox genes Ubx and abdA in diverse crustacean species. In crustaceans, these genes are thought to be involved in specifying the post-gnathal region of the trunk. Using the monoclonal antibody FP6.87 (ref. 13), which recognizes a conserved epitope specific to the Ubx and AbdA proteins, we examined Ubx–AbdA expression in thirteen crustacean species from nine different orders. In all cases, we observed expression in the limb-bearing region of the trunk posterior to gnathal segments, or posterior to thoracic segments bearing maxillipeds when these were present.

In branchiopod crustaceans, which do not have maxillipeds, Ubx and abdA are expressed throughout the thoracic region. In Artemia franciscana (Anostraca), there is FP6.87 staining in a domain that starts from the first thoracic segment (T1) and extends posteriorly throughout the trunk, starting from T1 (Fig. 1g). We consider this anterior boundary of Ubx–AbdA distribution to be primitive within malacostracans and shared by all crustaceans with primitively uniform thorax. In Triops longicaudatus (Notostraca), the same anterior boundary of Ubx–AbdA distribution is seen in the early larval stages, at a time when all thoracic limbs are morphologically identical and clearly distinct from the gnathal appendages (Fig. 1c–e). A similar pattern of expression is also observed in leptostracans, a group of malacostracan crustaceans that bear no maxillipeds in anterior trunk segments. The thorax of all malacostracans consists characteristically of eight segments; leptostracans are thought to have retained a number of primitive malacostracan features, including uniform morphology of all eight thoracic segments and limbs (Fig. 1f). In early embryos of Paranebalia belizensis (Leptostraca), we observed FP6.87 staining in the entire post-gnathal region of the trunk, starting from T1 (Fig. 1g). We consider this anterior boundary of Ubx–AbdA expression to be primitive within malacostracans and shared by all crustaceans with primitively uniform thoracic segments (as also seen in branchiopods). Below we describe changes in Ubx–AbdA expression in two groups of malacostracan crustaceans which carry different numbers of maxillipeds, peracarids and decapods.

In peracarids, the first, and sometimes second, of the eight thoracic segments bear limbs that have acquired several characteristics of feeding appendages. We find that the modification of these segments correlates with the repression of Ubx–AbdA expression in those segments. In the mysid Mysidium colombiae (Mysida), the T1 limb has acquired the characteristic gnathal-like morphology of maxillipeds (Fig. 2a); a similar modification is seen in the most distal part of the T2 limb (Fig. 2a), although this limb still retains most morphological and functional characteristics of a swimming appendage. In comparison to leptostracans, the initial anterior

Figure 1 Crustaceans with no maxillipeds. a, FP6.87 (brown) and engrailed (black) staining of Artemia before the morphological appearance of thoracic appendages. b, Higher-magnification view. Ubx–abdA expression begins in the first thoracic segment (T1) and extends into the more posterior regions. The anterior expression border is segmental, but will eventually extend to a slightly more anterior parasegmental border in the ventral neurogenic region. c, Morphology of limbs in Triops larvae (3 days after hatching). Thoracic appendages (T1, T2) have similar morphology and are distinct from the appendages of gnathal segments (Mxl is shown; MxII is reduced in size even further). d, FP6.87 staining of Triops (2.5 days after hatching). e, Higher-magnification view, focused on cells at the limb bases. As in Artemia, Ubx–abdA expression begins at the T1 segment and extends posteriorly. f, Morphology of adult limbs in Paranebalia. All eight thoracic appendages have similar morphology; T1 is somewhat smaller, particularly its exopod (Ex). Gnathal appendages have very reduced endopods and exopods, but prominent endites (arrows). g, FP6.87 (brown) and engrailed (black) staining of Paranebalia as limbs are becoming visible. Ubx–abdA expression begins in T1 and extends posteriorly.
boundary of $\textit{Ubx–abdA}$ expression in mysids appears to be shifted backwards by an entire metameric unit. There is no FP6.87 staining in the T1 limb, weak staining in T2, and stronger staining in the more posterior regions of the trunk (Fig. 2b, c). We investigated this expression in more detail at different developmental stages. At all stages, we observed the same anterior borders of expression. At very early stages, when parasegments are only two cells wide, $\textit{Ubx–abdA}$ appear to be expressed or repressed uniformly within any given metameric unit, in both ectoderm and mesoderm (see posterior segments in Fig. 2b). Uniform early expression, however, becomes modulated within individual metameres during later development (differences in the level of expression, mosaic patterns; Fig. 2c, d). It is interesting to note that $\textit{Ubx–abdA}$ are expressed in the proximal portion of the T2 endopod, but excluded from its more distal part (Fig. 2d); it is this distal part of the T2 endopod that acquires gnathal-like characteristics (Fig. 2a). We have observed similar domains of $\textit{Ubx–abdA}$ expression in two other peracarids, a gammarid amphipod and an asellote isopod; in both cases the appearance of maxillipeds on T1 correlates with the repression of $\textit{Ubx–abdA}$ expression in that segment (data not shown).

Decapods are generally described as having three pairs of maxillipeds and five pairs of walking limbs in their thorax (hence expression in that segment (data not shown)). Many of those limbs, however, show extensive structural variation, both between species and within the same species at different developmental stages. We examined two decapod genera showing different patterns of segmental specialization in the anterior thorax. The cleaner shrimps $\textit{Periclimenes yucatanicus}$ and $\textit{Periclimenes pedersoni}$ (Decapoda) show the typical decapod reduction and modification of the three most anterior pairs of thoracic limbs during embryonic development (Fig. 3a) and into adulthood (Fig. 3b). FP6.87 staining indicates that $\textit{Ubx–abdA}$ expression is excluded from the first three thoracic parasegments and limbs, is weak in T4, and stronger in more posterior segments (Fig. 3c, d). Thus, with respect to leptostracans, the anterior boundary of $\textit{Ubx–abdA}$ distribution appears to have shifted backwards by three metameric units. In the lobster $\textit{Homarus americanus}$ (Decapoda), the specialization of anterior thoracopods differs at embryonic and postembryonic stages. Adult lobsters have five pairs of large thoracic limbs (T4–T8) plus three pairs of reduced limbs (T1–T3; these are readily identifiable as maxillipeds). At hatching, however, only the T1 and T2 limbs appear to be distinctly reduced and similar to gnathal appendages. The T3 limb is morphologically similar to the more posterior walking legs and does not have the properties of a maxilliped (Fig. 3e). In $\textit{Homarus}$ embryos, FP6.87 staining is absent from the first two thoracic parasegments (including the T1 and T2 limbs), and strong in T3 and more posterior segments (Fig. 3f). Thus, the anterior boundary of embryonic expression of $\textit{Ubx–abdA}$ in $\textit{Homarus}$ appears to have shifted backwards by two metameric units relative to leptostracans, and corresponds to the morphological transition in thoracic limbs seen at hatching.

Maxillipeds are widely distributed among crustaceans and can also be found in non-malacostracan groups like copepods. We examined $\textit{Ubx–abdA}$ expression in two cyclopoid copepods, $\textit{Mesocyclops edax}$ and $\textit{Diniothona oculata}$ (Cyclopoida), both of which have a single pair of maxillipeds on T1 (Fig. 2e). Once again, this morphological arrangement appears to be associated with a posterior shift in $\textit{Ubx–abdA}$ distribution: FP6.87 staining extends from T2 backwards, with no expression in the T1 limb, moderate expression in the T2 limb, and stronger expression further posterior (Fig. 2f). We observed a similar expression pattern in a diatomid calanoid copepod (data not shown).

Collectively, our observations reveal a striking correlation between the expression of $\textit{Ubx–abdA}$ and the morphological specialization of corresponding segments. In particular, the repression of \textit{Ubx} and \textit{abdA} expression in anterior trunk segments is associated with the development of a gnathal-like identity in those segments. Bearing in mind the widely documented role of Hox genes in specifying segmental identity, we suggest that this association may be direct and causal. A similar correlation between regional vertebral morphology and Hox expression has been reported among different species of vertebrates, in that case,
however, the observed changes appear to be associated primarily with regional changes in vertebral numbers, not with the evolution of new vertebral identities.

Maxilliped-bearing segments presumably acquire their distinct identity by expressing different combinations, patterns, or amounts of homeoproteins than do the other thoracic or gnathal segments. Studies in Drosophila have highlighted the importance of fine intrasegmental (mosaic) modulation in the expression patterns of Hox genes—it appears that different decisions on regional identity can be taken independently by different groups of cells within a segment. The identity of a maxilliped-bearing segment could therefore be determined as a mosaic, with some parts of the segment retaining a thoracic identity and others becoming homeotically transformed to a gnathal fate. The spatially modulated distribution of Ubx–AbdA within the mysid T2 limb (Fig. 2d) and the resulting mosaic morphology of this appendage (Fig. 2a) are consistent with this hypothesis. In addition to spatial modulation, temporal changes in the expression of Hox genes are important because different decisions on regional identity can be taken at different developmental times. Our results indicate that it is the early patterns of Ubx–abdA expression (before and during the initial phases of limb growth) that correlate with the modification of anterior thoracic limbs into feeding appendages. Later changes in expression patterns are observed in Artemia and Paranebalia (data not shown), where Ubx–abdA expression appears to retract from anterior thoracic segments as these segments mature. In both species this correlates with a reduction in the relative size of the corresponding thoracic limbs (Fig. 1f). Perhaps more interesting are cases like Triops and Homarus, where qualitative changes in the structure of anterior limbs can be seen during larval life. The late expression patterns of Hox genes in those species are not yet known.

The fossil record suggests that primitive crustaceans had a rather uniform series of thoracic segments, with no apparent specialization of anterior thoracic limbs. Specialization of anterior thoracic appendages, however, is widespread among crustaceans today, and the phylogenetic distribution of these specializations suggests that similar morphological transformations have occurred independently several times during crustacean evolution (Fig. 4). Maxillipeds, for example, appear to have arisen independently in crustacean groups as diverse as malacostracans, copepods and...
remipedes9,11. Our findings indicate that such convergent changes may have been achieved by similar developmental changes (involving similar posterior shifts in the expression boundary of Ubx–AbdA) on several independent occasions. This suggests that, given a particular developmental system, there may be limited ways for achieving a particular morphological result.

It is often thought that the study of development mechanisms can provide a rigorous way to assess the homologous or convergent origin of morphological characteristics (see refs 7, 16, 24 for example). Our observations introduce one complication: this expectation will be true only in the extent to which convergent events are driven by distinguishable genetic changes. In this respect, it will be interesting to establish whether the observed convergent shifts in Hox expression can be attributed to distinguishable changes at a fine molecular-genetic level.

Received 25 March; accepted 10 June 1997.

8. Modifications of synaptic strength in the mammalian central nervous system (CNS) occurs at both pre- and postsynaptic sites9,10. However, because postsynaptic receptors are likely to be saturated by released transmitter, an increase in the number of active postsynaptic receptors may be a more efficient way of strengthening synaptic efficacy11–13. But there has been no evidence for a rapid recruitment of neurotransmitter receptors to the postsynaptic membrane in the CNS. Here we report that insulin causes the type \(\gamma\)-aminobutyric acid (GABA\textsubscript{A}) receptor, the principal receptor that mediates synaptic inhibition in the CNS, to translocate rapidly from the intracellular compartment to the plasma membrane in transfected HEK 293 cells, and that this relocation requires the \(\beta\) subunit of the GABA\textsubscript{A} receptor. In CNS neurons, insulin increases the expression of GABA\textsubscript{A} receptors on the postsynaptic and dendritic membranes. We found that insulin increases the number of functional postsynaptic GABA\textsubscript{A} receptors, thereby increasing the amplitude of the GABA\textsubscript{A}-receptor-mediated miniature inhibitory postsynaptic currents (mIPSCs) without altering their time course. These results provide evidence for a rapid recruitment of functional receptors to the postsynaptic plasma membrane, suggesting a fundamental mechanism for the generation of synaptic plasticity.

We used quantitative electron-microscopic analysis of immunogold labelling to investigate translocation of GABA\textsubscript{A} receptors in HEK 293 cells stably expressing the \(\alpha\)1, \(\beta\)2 and \(\gamma\)2 subunits of rat GABA\textsubscript{A} receptors9, the most common subunit combination of native GABA\textsubscript{A} receptors in the mammalian CNS10. We found that, under control conditions, only a small number of immunogold-labelled \(\beta\) subunits could be observed at the membrane surface, and that most labelling was localized intracellularly (Fig. 1a,c). Treatment with insulin dramatically increased the number of gold-labelled GABA\textsubscript{A} receptor subunits in the plasma membrane (Fig. 1b,c); the change could be detected as early as 10 min after insulin treatment (data not shown). An increase in receptor synthesis was not involved, as even 60 min of insulin treatment did not affect the total cellular expression of \(\beta\) subunits (Fig. 1c). Pretreatment of cells with genistein, a membrane-permeable inhibitor of protein-tyrosine kinases11,12, prevented the insulin-induced translocation without altering basal GABA\textsubscript{A} receptor distribution (Fig. 1c), suggesting a requirement for activation of the insulin receptor tyrosine kinase13. To determine whether the insulin-induced receptor translocation leads to an increase in the number of functional GABA\textsubscript{A} receptors on the plasma-membrane surface, we recorded GABA\textsubscript{A} receptor-mediated whole-cell currents in these cells. Bath application of insulin (0.5 \(\mu\)M) produced a significant increase in the amplitude of the currents, an effect not observed in cells pretreated with genistein (Fig. 1d). These results demonstrate a rapid increase in the number of functional GABA\textsubscript{A} receptors on the plasma-membrane surface as a result of receptor translocation by activation of insulin-receptor tyrosine kinase.

To determine which subunit(s) is required for insulin-induced